RAPID COMMUNICATIONS

PHYSICAL REVIEW E

VOLUME 52, NUMBER 5

NOVEMBER 1995

Breatherlike impurity modes in discrete nonlinear lattices

D. Hennig,* K. @. Rasmussen,>> G. P. Tsironis,>

4 and H. Gabriel!

' Fachbereich Physik, Institut fiir Theoretische Physik, Freie Universitit Berlm, Arnimallee 14, 14195 Berlin, Germany
2Institute of Mathematical Modelling, Technical University of Denmark, 2800 Lyngby, Denmark
3Physics Department and Research Center of Crete, University of Crete, PO Box 1527, Heraklion 71110, Crete, Greece
4Center for Nonlinear Science and Department of Physics, University of North Texas, Denton, Texas 76203
(Received 14 June 1995)

We investigate the properties of a disordered generalized discrete nonlinear Schrodinger equation, containing
both diagonal and nondiagonal nonlinear terms. The equation models a linear host lattice doped with nonlinear
impurities. We find different types of impurity states that form itinerant breather states in the vicinity of the
impurities. We analyze the properties of these breathers analytically and numerically.

PACS number(s): 03.40.Kf, 42.65.Pc, 71.10.+x

A rapidly growing number of recent investigations have
been devoted to the combined effects of disorder and nonlin-
earity [1-5]. In infinite nonlinear lattices disorder is the
source of two different types of phenomena. The first can be
described as nonlinearity-induced symmetry breaking ac-
companied by the formation of an intrinsic local mode [3].
The second is met in cases, when disorder of the Anderson
type is present in the nonlinear lattice [4,5]. In both cases
disorder induces the formation of impurity states and dy-
namical features completely different from the ones in the
corresponding linear lattices [6]. Some of the characteristic
features of the nonlinear modes, such as exponentially local-
ized shape and energies outside the linear lattice band [7-9],
are quite similar to those of the (conventional) linear local-
ized states. Others are completely different, e.g., the appear-
ance of localized states only above a critical value of the
nonlinearity strengths [8,10]. In this paper we shall describe
a completely different type of nonlinear impurity state that is
not characterized through a stationary shape and that
emerges near impurity sites and forms an itinerant breather
state in their vicinity. It is created through nonlinear impuri-
ties in the context of a generalized discrete nonlinear Schro-
dinger equation presenting a generic model of nonlinear lat-
tice systems with disorder.

We are interested in the dynamics of quasiparticles (elec-
trons or excitations) in a one-dimensional tight-binding lin-
ear lattice doped with impurities interacting nonlinearly with
the host lattice. The dynamics is described by the following
discrete nonlinear Schrodinger equation:
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where ¢, is a complex amplitude, and w and 7y are real
nonlinearity parameters corresponding to the nonlinear
impurity-doped site situated at the site with index / contained
in the set of integers {m}. If {m} is extended to cover the
complete lattice, Eq. (1) becomes identical to an equation
introduced by Salerno [11], studied initially by Cai, Bishop,
and Grénbech-Jensen [12] and further in Refs. [13—15]. One
notable feature of the equation studied by Cai et al. or its
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disordered version as given by Eq. (1) is that it interpolates
between the conventional, nonintegrable, discrete nonlinear
Schrodinger equation (DNLS) or discrete self-trapping equa-
tion (DST), (.=0) and the completely integrable Ablowitz-
Ladik (AL) equation (y=0) [11-17]. The AL-DNLS equa-
tion (1) can be derived from the Hamiltonian

_; {0y i1+ a0y 11}
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with a modified Poisson bracket given by {y,,¥%}
=i8, m(1+ ul¢|?8,,), le{m} and ¢, ={H,y}} [12]. The
diagonal DNLS-nonlinearity term modulates the on-site en-
ergies (taken to be equal to zero for simplicity) whereas the
off-diagonal AL-nonlinearity affects the transfer matrix ele-
ments and hence the bandwidth. In addition to the energy H,
the system of equations (1) possesses a further integral given
by

1
= |+ E{} L+ ply); 3)
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the latter serves as norm taken as N=1.

In order to investigate the character of localized solutions
of Eq. (1) we first analyze the case of a single AL-impurity
situated at the center site of the linear chain, i.e.,
{m}={0}, where the total excitation energy is assumed to be
localized initially. The initial amplitude is therefore given by
|o(t=0)|?>=[exp(n)—1)/u. We integrate the equations of
motion numerically by using a Runge-Kutta method while
checking the accuracy using the conserved quantities H and
N. Figure 1 shows the typical probability profile |, (¢)|? at
different lattice sites around the central site as a function of
time for the parameter choice of u=7. We observe that part
of the initial amplitude escapes to the linear chain sites with
|n|>1, whereas the remaining amplitude is trapped in the
initially excited central site and the two adjacent ones. For
u=7 we have ||?+|_1|*+ In(1+ u|¢p|?)/ u~0.67. The
phenomenon of the amplitude trapping in the vicinity of the
impurity site was already observed in DNLS-like impurities
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FIG. 1. Probability profile of the AL breather with w=7. The
inset shows the time evolution of the squared central site amplitude
and the out-of-phase oscillation of 2|,|? at the adjacent sites.

studies for some nonlinearity parameter regimes [5-10].
However, in these nonlinear cases, the impurity state profile
reaches a stationary exponentially localized shape [8]. In
contrast we observe the surprising feature that the trapped
state does not become stationary at all, but is characterized
by an itinerant out-of-phase energy exchange between the
central site and the two neighboring linear sites. Thus the
produced localized impurity state is a long-lived stable
breather [18,19]. Increasing the nonlinearity strength u re-
sults in higher (initial) central-site amplitudes, shorter tran-
sient times, and faster stable breather formation. We observe
that the AL term suppresses energy transfer from the initially
excited central site to those beyond |n|=2, an effect that is
progressively enhanced with increasing u and results in self-
trapping of the excitation energy in the trimer segment,
n=—1,0,1. Thus, for large u values the central dynamical
trimer segment effectively decouples from the rest of the
chain. We mention that the breatherlike impurity state can
also be formed by initial energy depositing in the linear part
of the chain.

To gain more insight into the dynamics of the breather, we
isolate the central three sites and study the resulting AL tri-
mer. We make the ansatz y(t)=A(¢) and ¢.,(t)=iB(t)
with real amplitudes A and B. Its specific form is motivated
by the fact that in the chain for a real initial condition
40(0), the solution alternates between purely real and imagi-
nary amplitudes at different sites. After some straightforward
algebra we obtain the integrable system of equations

A=2(1+uA?%B, B=-A, 4)

which admits the following conserved integral (the norm for
the truncated trimer)

1
N=2B*+ ;ln(1+p,A2). 5)

In Fig. 2(a) we plot the level curves for N=1 in the A-B
plane for different u values. We observe the enhanced “an-
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FIG. 2. (a) The level curves of N=1 in the A-B phase plane of
an AL trimer determined by the equations in (4). We show the level
curves of the norm N for different u values. Dashed-dotted line:
m=2; Long-dashed line: p=4; short-dashed line: u=6; full line:
p=28. (b) Oscillation frequency of the (genuine) AL trimer as a
function of u calculated through Eq. (6). The triangles correspond
to the resonant oscillation frequency of the breathing mode in the
lattice and are obtained numerically. The dashed lines represent the
application of the expression of Eq. (6) for N=N(u), where
N(u) has been numerically determined from the complete chain
simulations. The agreement with the exact numerical result has
been improved. Note that the true breather disappears when its fre-
quency becomes identical to the upper band edge frequency.

harmonic” deformation of these curves with increasing wu.
The breather period for the energy exchange on the trimer
sites is readily obtained as

T =2J'JIW7 dB ®)
" P ferptuiv-2821-11
w PLM

Figure 2(b) shows the frequency of the energy exchange
w,=2/T,, as a function of the nonlinearity strength w (full
line). The triangles correspond to the breather frequency ob-
tained from numerical results for the infinite chain. We note
that although the trimer result underestimates the actual fre-
quency of the breather oscillation in the chain, it gives the
correct slope as a function of w.

When two or more AL nonlinear impurities separated by a
distance of at least three sites are placed in the lattice, a
formation of a corresponding number of breather impurity
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FIG. 3. Probability profile for the case of two AL impurities
arranged at a distance of nine lattice sites apart from each other. The
initial energy is placed in the center site between the two impurity
sites. We observe the formation of AL breathers around each of the
impurity sites. The inset shows the time evolution of the natural
logarithm of the center amplitude of one of the breathers, where
after a short transient period the regime of the stable itinerant os-
cillation is reached. [Due to the symmetry ¢,(¢) = ¢_,(¢) it is suf-
ficient to show only the amplitude | 5(¢)|%.]

states is possible. As a result we can form a lattice of breath-
ers each of which is created in the vicinity of an impurity and
involves the two sites around it. In Fig. 3 we show the for-
mation of two such breatherlike impurity states under the
initial condition of depositing all the entire excitation energy
in the linear site bisecting the distance between the nonlinear
impurities.

Having investigated the properties of the AL-type impu-
rities we now turn to the case of AL-DNLS impurities gov-
erned by Eq. (1). We note that pure DNLS impurities in a
linear lattice chain provide a stationary self-trapped mode at
the impurity site for y=3.2 [8,10] and that this localized
state is well fitted by an exponential [7,8]. An interesting
question remains to be answered: What will be the result of
the competition between the dynamical self-trapped breath-
ing mode supported by nondiagonal AL impurities and the
stationary self-trapping mode originating from diagonal
DNLS impurities? In Fig. 4 the probability profile for the
combined case of u=7 and y=0.5 is depicted. As can be
seen from the inset, showing the time evolution of the am-
plitudes at the central site and the neighboring ones (peri-
odic) oscillations of the amplitudes still exists. But compared
to its pure AL counterpart (y=0) (see Fig. 1), for the com-
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FIG. 4. Amplitude profile for the combined AL-DNLS impurity.
Parameters are =7 and y=0.5. The time evolution of the natural
logarithm of the central site amplitude as well as that of its neigh-
boring ones presented in the inset illustrate the self-trapping of the
excitation energy at the central DNLS site.

bined AL-DNLS impurity there is no complete energy ex-
change between the central site and its adjacent sites pointing
to the bias of self-trapping at the initially excited nonlinear
DNLS-impurity site. Indeed, with increasing y the energy
transfer dynamics becomes more and more dominated by the
DNLS term in the sense that although the out-of-phase os-
cillations are sustained, the amount of energy which remains
in the central impurity site increases, whereas the maximal
amplitudes at the adjacent sites diminish. There is almost no
dynamical energy transfer in lattice sites apart from the cen-
tral site, hence a self-trapped mode is created at the DNLS
impurity site whose amplitude performs small oscillations
around a mean value.

The existence of different types of impurity states in non-
linear models shows that disorder in nonlinear systems can
lead to very different physical behaviors from the usual lin-
ear ones. The existence of genuine breathing modes in the
AL-DNLS system can lead to the formation of a lattice of
breathers each one of which is induced by the existence of a
single impurity site. The formation of this lattice can have
profound effects on the propagation properties of electrons in
strongly interacting quasi-one-dimensional materials.
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